
Scheduling

Main Points
• Scheduling policy: what to do next, when there are multiple

threads ready to run
– Or multiple packets to send, or web requests to serve, or …

• Definitions
– response time, throughput, predictability

• Uniprocessor policies
– FIFO, round robin, optimal
– multilevel feedback as approximation of optimal

• Multiprocessor policies
– Affinity scheduling, gang scheduling

• Queueing theory
– Can you predict/improve a system’s response time?

Example

• You manage a web site, that suddenly
becomes wildly popular. Do you?
– Buy more hardware?
– Implement a different scheduling policy?
– Turn away some users? Which ones?

• How much worse will performance get if the
web site becomes even more popular?

Definitions
• Task/Job

– User request: e.g., mouse click, web request, shell command, …
• Latency/response time

– How long does a task take to complete?
• Throughput

– How many tasks can be done per unit of time?
• Overhead

– How much extra work is done by the scheduler?
• Fairness

– How equal is the performance received by different users?
• Predictability

– How consistent is the performance over time?

More Definitions
• Workload

– Set of tasks for system to perform
• Preemptive scheduler

– If we can take resources away from a running task
• Work-conserving

– Resource is used whenever there is a task to run
– For non-preemptive schedulers, work-conserving is not always

better
• Scheduling algorithm

– takes a workload as input
– decides which tasks to do first
– Performance metric (throughput, latency) as output
– Only preemptive, work-conserving schedulers to be considered

First In First Out (FIFO)

• Schedule tasks in the order they arrive
– Continue running them until they complete or

give up the processor
• Example: memcached
– Facebook cache of friend lists, …

• On what workloads is FIFO particularly bad?

Shortest Job First (SJF)

• Always do the task that has the shortest
remaining amount of work to do
– Often called Shortest Remaining Time First (SRTF)

• Suppose we have five tasks arrive one right
after each other, but the first one is much
longer than the others
– Which completes first in FIFO? Next?
– Which completes first in SJF? Next?

FIFO vs. SJF

Question

• Claim: SJF is optimal for average response
time
– Why?

• Does SJF have any downsides?

Question

• Is FIFO ever optimal?

• Pessimal?

Starvation and Sample Bias

• Suppose you want to compare two scheduling
algorithms
– Create some infinite sequence of arriving tasks
– Start measuring
– Stop at some point
– Compute average response time as the average

for completed tasks between start and stop
• Is this valid or invalid?

Sample Bias Solutions

• Measure for long enough that # of completed
tasks >> # of uncompleted tasks
– For both systems!

• Start and stop system in idle periods
– Idle period: no work to do
– If algorithms are work-conserving, both will

complete the same tasks

Round Robin

• Each task gets resource for a fixed period of
time (time quantum)
– If task doesn’t complete, it goes back in line

• Need to pick a time quantum
– What if time quantum is too long?
• Infinite?

– What if time quantum is too short?
• One instruction?

Round Robin

Round Robin vs. FIFO

• Assuming zero-cost time slice, is Round Robin
always better than FIFO?

Round Robin vs. FIFO

Round Robin = Fairness?

• Is Round Robin always fair?

• What is fair?
– FIFO?
– Equal share of the CPU?
– What if some tasks don’t need their full share?
– Minimize worst case divergence?
• Time task would take if no one else was running
• Time task takes under scheduling algorithm

Mixed Workload

Max-Min Fairness
• How do we balance a mixture of repeating tasks:
– Some I/O bound, need only a little CPU
– Some compute bound, can use as much CPU as they

are assigned
• One approach: maximize the minimum allocation

given to a task
– If any task needs less than an equal share, schedule

the smallest of these first
– Split the remaining time using max-min
– If all remaining tasks need at least equal share, split

evenly

Multi-level Feedback Queue (MFQ)

• Goals:
– Responsiveness
– Low overhead
– Starvation freedom
– Some tasks are high/low priority
– Fairness (among equal priority tasks)

• Not perfect at any of them!
– Used in Linux (and probably Windows, MacOS)

MFQ

• Set of Round Robin queues
– Each queue has a separate priority

• High priority queues have short time slices
– Low priority queues have long time slices

• Scheduler picks first thread in highest priority
queue

• Tasks start in highest priority queue
– If time slice expires, task drops one level

MFQ

Uniprocessor Summary (1)
• FIFO is simple and minimizes overhead.
• If tasks are variable in size, then FIFO can have

very poor average response time.
• If tasks are equal in size, FIFO is optimal in terms

of average response time.
• Considering only the processor, SJF is optimal in

terms of average response time.
• SJF is pessimal in terms of variance in response

time.

Uniprocessor Summary (2)

• If tasks are variable in size, Round Robin
approximates SJF.

• If tasks are equal in size, Round Robin will
have very poor average response time.

• Tasks that intermix processor and I/O benefit
from SJF and can do poorly under Round
Robin.

Uniprocessor Summary (3)

• Max-Min fairness can improve response time
for I/O-bound tasks.

• Round Robin and Max-Min fairness both avoid
starvation.

• By manipulating the assignment of tasks to
priority queues, an MFQ scheduler can
achieve a balance between responsiveness,
low overhead, and fairness.

Multiprocessor Scheduling

• What would happen if we used MFQ on a
multiprocessor?
– Contention for scheduler spinlock
– Cache slowdown due to ready list data structure

pinging from one CPU to another
– Limited cache reuse: thread’s data from last time

it ran is often still in its old cache

Per-Processor Affinity Scheduling

• Each processor has its own ready list
– Protected by a per-processor spinlock

• Put threads back on the ready list where it had
most recently run
– Ex: when I/O completes, or on Condition->signal

• Idle processors can steal work from other
processors

Per-Processor Multi-level Feedback
with Affinity Scheduling

Scheduling Parallel Programs

• What happens if one thread gets time-sliced
while other threads from the same program
are still running?
– Assuming program uses locks and condition

variables, it will still be correct
– What about performance?

Bulk Synchronous Parallelism
• Loop at each processor:
– Compute on local data (in parallel)
– Barrier
– Send (selected) data to other processors (in parallel)
– Barrier

• Examples:
– MapReduce
– Fluid flow over a wing
– Most parallel algorithms can be recast in BSP

• Sacrificing a small constant factor in performance

Tail Latency

Scheduling Parallel Programs
Oblivious: each processor time-slices its ready

list independently of the other processors

Gang Scheduling

Parallel Program Speedup

Space Sharing

Scheduler activations: kernel tells each application its # of
processors with upcalls every time the assignment changes

Queueing Theory

• Can we predict what will happen to user
performance:
– If a service becomes more popular?
– If we buy more hardware?
– If we change the implementation to provide more

features?

Queueing Model

Assumption: average performance in a stable system,
where the arrival rate (ƛ) matches the departure rate (μ)

Definitions

• Queueing delay (W): wait time
– Number of tasks queued (Q)

• Service time (S): time to service the request
• Response time (R) = queueing delay + service time
• Utilization (U): fraction of time the server is busy
– Service time * arrival rate (ƛ)

• Throughput (X): rate of task completions
– If no overload, throughput = arrival rate

Little’s Law

N = X * R

N: number of tasks in the system

Applies to any stable system – where arrivals
match departures.

Question

Suppose a system has throughput (X) = 100 tasks/s,
average response time (R) = 50 ms/task

• How many tasks are in the system on average?
• If the server takes 5 ms/task, what is its

utilization?
• What is the average wait time?
• What is the average number of queued tasks?

Question

• From example:
X = 100 task/sec
R = 50 ms/task
S = 5 ms/task
W = 45 ms/task
Q = 4.5 tasks

• Why is W = 45 ms and not 4.5 * 5 = 22.5 ms?
– Hint: what if S = 10ms? S = 1ms?

Queueing

• What is the best case scenario for minimizing
queueing delay?
– Keeping arrival rate, service time constant

• What is the worst case scenario?

Queueing: Best Case

Response Time: Best vs. Worst Case

Queueing: Average Case?

• What is average?
– Gaussian: Arrivals are spread out, around a

mean value
– Exponential: arrivals are memoryless
– Heavy-tailed: arrivals are bursty

• Can have randomness in both arrivals
and service times

Exponential Distribution

Exponential Distribution

Permits closed form solution to state probabilities,
as function of arrival rate and service rate

Response Time vs. Utilization

Question

• Exponential arrivals: R = S/(1-U)
• If system is 20% utilized, and load increases by

5%, how much does response time increase?

• If system is 90% utilized, and load increases by
5%, how much does response time increase?

Variance in Response Time

• Exponential arrivals
– Variance in R = S/(1-U)^2

• What if less bursty than exponential?

• What if more bursty than exponential?

What if Multiple Resources?

• Response time =
Sum over all i

Service time for resource i /
(1 – Utilization of resource i)

• Implication
– If you fix one bottleneck, the next highest utilized

resource will limit performance

Overload Management
• What if arrivals occur faster than service can

handle them
– If do nothing, response time will become infinite

• Turn users away?
– Which ones? Average response time is best if turn

away users that have the highest service demand
– Example: Highway congestion

• Degrade service?
– Compute result with fewer resources
– Example: CNN static front page on 9/11

Highway Congestion (measured)

Why Do Metro Buses Cluster?

• Suppose two Metro buses start 15 minutes
apart
– Why might they arrive at the same time?

